Prof. Auxiliar
ICIST
Lisboa-Portugal
SUMÁRIO
Este artigo descreve sumariamente alguns dos principais estudos sobre o comportamento sísmico das estruturas pombalinas edificadas em Lisboa e outras regiões de Portugal durante a reconstrução após o sismo de 1755.
Discute-se a função que a Gaiola Pombalina ainda tem ou pode ter na resistência dos edifícios Pombalinos actuais a futuros sismos. Discute-se também a viabilização económica de intervenções de reforço, e a importância da preservação e valorização dos valores patrimoniais que a Baixa de Lisboa encerra, em particular a estrutura sismo-resistente da Gaiola Pombalina.
1. INTRODUÇÃO
A reconstrução de Lisboa após o sismo de 1755 foi feita com base numa estrutura sismo-resistente baseada em treliças tridimensionais em madeira que resistiam a forças horizontais em qualquer direcção, como as induzidas pelos sismos nas construções, a chamada Gaiola Pombalina. Foi a primeira vez na História da Humanidade que uma cidade inteira foi construída com o objectivo de assegurar a sua resistência a sismos futuros. Assim a Baixa Pombalina de Lisboa é um marco da História da Humanidade, e uma parte importante do Património construído de Portugal. Para grande parte da população a construção Pombalina é apenas uma curiosidade histórica, de que ouviram falar quando na juventude estudaram o sismo de 1755 na disciplina de História, sendo o seu valor cultural reconhecido essencialmente nos extractos mais cultos da sociedade. Mas no essencial, tanto uns como outros apenas dão valor à construção Pombalina pelo seu valor histórico.
No entanto a investigação feita nos últimos quinze anos tem demonstrado que a Gaiola Pombalina é muito mais do que isso. Tem demonstrado que a construção Pombalina ainda hoje confere resistência sísmica a muitos dos edifícios construídos durante 1 século em Lisboa após o terramoto de 1755. Essa investigação também tem demonstrado que mesmo em edifícios adulterados e enfraquecidos por intervenções pouco criteriosas após a construção original, em particular durante o século XX, a Gaiola pode servir de base a um reforço estrutural antisísmico menos extensivo e intrusivo do que seria necessário se a Gaiola não existisse. Assim neste artigo descrevem-se as principais características da construção pombalina bem como alguns dos principais trabalhos de investigação realizados nos últimos anos que demonstram que a sua função original ainda hoje se mantêm actual.
2. BREVE DESCRIÇÃO DAS ESTRUTURAS POMBALINAS
A reconstrução da Baixa de Lisboa e em menor escala de outros aglomerados urbanos afectados pelo terramoto de 1755 foi feita com o cuidado de conferir aos edifícios resistência sísmica de forma a que pudessem resistir a futuros sismos. A principal característica estrutural da construção pombalina é a chamada Gaiola Pombalina, uma estrutura de madeira capaz de resistir a forças horizontais em qualquer direcção, bem como a cargas verticais.
A Gaiola é constituída por diversos painéis planos (frontais) que se compatibilizam através de prumos verticais comuns.. Geometricamente cada painel é constituído por um conjunto de triângulos, semelhante às treliças metálicas de estruturas actuais. Como o triângulo é a única figura geométrica que não se pode deformar sem variar o comprimento dos lados, os painéis apenas precisam de mobilizar a resistência axial das barras de madeira para resistir bem tanto a cargas verticais como a cargas horizontais no seu plano. A compatibilização dos diversos painéis planos ortogonais através de prumos verticais comuns dá origem a uma treliça tridimensional capaz de resistir a cargas em qualquer direcção. Os frontais encontram-se em geral embebidos em painéis preenchidos com alvenaria e com acabamento exterior, pelo que em geral a estrutura de madeira não é vísivel. A figura 1 mostra fotografias da Gaiola depois de removida a alvenaria, num edifício pombalino recentemente demolido em Lisboa.
Normalmente a Gaiola existe em paredes interiores acima do 1º andar, sendo as fachadas e as empenas em alvenaria de pedra ordinária. Os pavimentos acima do 1º andar são constituídos por travessas de madeira apoiadas em barrotes transversais, que se apoiam nas paredes exteriores e nos frontais. Nas construções de melhor qualidade os barrotes são peças únicas de fachada a fachada e em outras são emendados sobre os frontais, perdendo continuidade. Os barrotes dos pavimentos e os frontais são amarrados no interior das paredes de alvenaria, embora haja dúvidas sobre a resistência destas ligações. As ligações entre barrotes são feitas por meio de entalhes e usando pregos, como se ilustra na figura 2.
Os tectos do rés-do-chão (pavimentos do 1º andar) são em geral construídos com arcos ou abóbadas de alvenaria, de que se apresentam exemplos na figura 3, para assegurarem uma função corta-fogo entre o rés-do-chão e os andares superiores, bem como para impedir a propagação de humidades para a estrutura de madeira dos andares superiores. Ao nível do rés-do-chão, onde a Gaiola em geral não existe, os arcos e abóbadas apoiam-se em pilares de alvenaria de pedra e nas paredes exteriores e de empena.
Outra característica da construção pombalina, tendo em conta a sua aplicação à escala de uma cidade, era a standardarização e industrialização dos processos construtivos. Os carpinteiros edificavam os frontais e posteriormente os pedreiros faziam os preenchimentos de alvenaria. As paredes de empena são comuns aos edifícios de ambos os lados e em geral prolongavam-se acima do topo de ambos, constituindo assim uma barreira à propagação de potenciais incêndios. Dado que a construção dos diferentes edifícios de um quarteirão não era em geral simultânea, existem superfícies de separação nítida entre fachadas e empenas, evido à não simultaneidade da sua construção. A standardarização estendeu-se também para lá do edifício individual. Os quarteirões dispõem-se entre um conjunto de ruas ortogonais dando origem a quarteirões rectangulares e os edifícios tinham, de acordo com os planos da reconstrução, todos a mesma altura, com rés-do-chão, 3 pisos elevados e águas furtadas. Conseguia-se assim um conjunto de edifícios de características dinâmicas semelhantes e um melhor comportamento sísmico do conjunto.
Como os terrenos de fundação na Baixa de Lisboa apresentam fraca capacidade de carga, os elementos verticais de suporte assentam sobre um engradado de madeira apoiado num conjunto de estacas de madeira de pequeno diâmetro e comprimento reduzido (cerca de 5m). A figura 4 mostra o esquema construtivo e uma fotografia do topo das estacas, obtida nas caves do Museu do BCP.
3. RESISTÊNCIA SÍSMICA NA ACTUALIDADE
A atenção crescente que a sociedade e a comunidade técnica dedicam às estruturas construídas, levou a que em particular a partir da década de 1990 se efectuassem numerosos estudos experimentais e analíticos sobre o seu potencial desempenho estrutural, em particular sob acções sísmicas. No Instituto Superior Técnico (IST) o primeiro trabalho de avaliação da resistência sísmica de edifícios antigos, baseado num conjunto de testes à rotura realizados in situ complementados com a análise da estrutura, realizou-se em 1994 e incidiu sobre um edifício gaioleiro [4]. Nestes testes partes da estrutura existente foram usados como parede de reacção de forma a aplicar forças horizontais suficientemente elevadas para levar os elementos testados à rotura. A Figura 5 mostra o teste sobre parte da fachada, incluindo detalhes da instrumentação, que foi divida em duas partes desiguais: a menor que foi testada e a maior (mais resistente) que serviu de ponto de apoio dos macacos que aplicaram as forças.
Este trabalho pôs a nu as tremendas fraquezas estruturais deste tipo de edifícios, em particular para acções sísmicas. No entanto esta conclusão não é extrapolável para edifícios pombalinos, como os trabalhos posteriores vieram a revelar. No início da década de 2000, Rafaela Cardoso [2] analisou com detalhe um modelo de um edifício pombalino com rés-do-chão, 4 pisos e águas furtadas, com os números 210 a 220 da Rua da Prata em Lisboa, que se mostra na figura 6 e a cujo projecto/levantamento teve acesso. No entanto não houve possibilidade de efectuar uma vistoria detalhada ao edifício nem de caracterizar experimentalmente os materiais.
Assim o modelo baseou-se em valores médios das propriedades das alvenarias, tendo as características dos frontais sido alvo de calibração experimental. A análise iterativa, para ter conta em cada iteração a rotura das ligações na iteração anterior, revelou que o modo de rotura do edifício seria por queda da fachada principal para fora do seu plano devido à rotura sequencial das ligações frontal/fachada principal. A rotura ocorreria para uma acção sísmica de cerca de 40% da prescrita no RSA [5] se se assumisse que a resistência à tracção das ligações aos frontais era fraca (considerou-se um coeficiente de amortecimento x=10% e um coeficiente de comportamento q=1,5).
Se no entanto esse modo de rotura não ocorresse por as ligações terem mais resistência do que assumido ou porque fosse evitado pelo reforço das ligações, a estrutura resistiria a cerca de 100% da acção sísmica regulamentar e o colapso ocorreria nas colunas e paredes entre o rés-do-chão e o 1º andar. É provável que muitos edifícios pombalinos originais tivessem capacidade para resistir a sismos ainda mais fortes, pois o edifício analisado deve ser um pombalino tardio, pois tem mais 1 piso do que a construção pombalina original. Esta conclusão é extrapolável para a actualidade, desde que a estrutura não tenha sido adulterada após a construção original, dado o bom estado de conservação das madeiras em edifícios que não se degradaram ao longo do tempo. Por exemplo a figura 7 mostra partes de frontais pombalinos, removidos recentemente um edifício da Baixa de Lisboa, em excelentes condições de conservação. Embora possa haver dúvidas sobre a resistência real das ligações entre as fachadas e os frontais, que em projectos concretos deveriam ser analisadas em cada edifício, o resultado (a capacidade para resistir ao sismo regulamentar actual) é notável para edifícios construídos há duzentos anos atrás.
Outro aspecto relevante deste estudo foi a calibração das propriedades dos frontais. Além de terem sido comparadas diversas formas de modelar matematicamente os mesmos, considerando sempre as peças de madeira dos frontais individualmente como peças lineares articuladas, compararam-se os valores analíticos da rigidez com resultados experimentais. Para este efeito utilizaram-se resultados de ensaios de painéis de frontal à escala natural realizados no Laborátório Nacional de Engenharia Civil (LNEC) para a firma OZ, Lda [6] e outro conjunto de ensaios em modelo reduzido de frontais, também realizados no LNEC [7]. Os painéis à escala natural foram retirados de um edifício pombalino e cuidadosamente transportados para o LNEC. A figura 8 mostra o esquema de ensaio e um painel após o teste.
A comparação mostrou que os resultados analíticos sobrestimavam sempre a rigidez experimental, para o que foram identificadas 3 causas possíveis: 1 - as ligações de extremidade das diagonais traccionadas da Gaiola, inicialmente consideradas no modelo analítico, não tinham capacidade de transmitir as forças de tracção mobilizáveis nas diagonais; 2 - a alvenaria quase não contribuía para a rigidez dos painéis, pois tende a destacarse das peças de madeira da Gaiola quando o conjunto se começa a deformar; esta conclusão foi reforçada recentemente durante um conjunto de testes de painéis semelhantes aos frontais pombalinos construídos e testados no Laboratório de Estruturas e Resistência de Materiais do IST [8], sendo a principal diferença o facto de a argamassa da alvenaria ser hidráulica e não de cal aérea, podendo assim inferir-se que aos painéis testados têm alvenaria mais resistente que os pombalinos originais; mesmo assim nota-se claramente a separação entre a alvenaria de enchimento e as peças de madeira da Gaiola na figura 9, que mostra um dos painéis sujeito a deformações significativas; confirma-se assim a pouca relevância das características da alvenaria para o desempenho sísmico; 3 - as folgas nas ligações entre barrotes permitem deformações iniciais antes de mobilizar as diagonais comprimidas.
A figura 10 mostra a existência destas folgas em ligações e o diagrama de comportamento associado. Esta conclusão sobre as folgas foi confirmada por comparação com os resultados de outro conjunto de ensaios realizado no LNEC [7]. Estes incidiram sobre modelos de cruzes de Stº André constituintes dos frontais, construídos à escala 1.3, e testados sob compressão diagonal. A figura11 mostra um dos modelos, esquema de ensaio e um painel após os testes, que evidenciaram não só as folgas nas ligações como também a separação entre a Gaiola e a alvenaria de enchimento.
No sentido de aprofundar o estudo da influência dos enchimentos de alvenaria no comportamento dos frontais pombalinos foi realizado recentemente no IST um estudo com base experimental [9] em que se testou testou a diferença de comportamento entre painéis com e sem enchimentos de alvenaria.
Os resultados mostraram que a alvenaria contribui para impedir a encurvadura da diagonal comprimida de madeira, que ocorre na zona central onde a secção transversal se reduz a metade devido à intersecção com a outra diagonal, como se pode observar na figura 12. Nestes testes também se observou que a alvenaria também induziu um aumento de rigidez global, apesar de para níveis elevados de deformação a alvenaria se destacar da estrutura de madeira em algumas localizações. No entanto a boa qualidade da execução e dos materiais da alvenaria deixa algumas dúvidas se este aumento de rigidez se registaria, ou não seria menos acentuado, nos edifícios pombalinos reais.
Além dos estudos sobre edifícios individuais foi também realizado um estudo de um quarteirão inteiro para a firma STAP, pois as paredes meeiras (empenas) são comuns a edifícios adjacentes e por isso os edifícios interagem uns com os outros [10]. A principal conclusão deste estudo é que o quarteirão não exibe comportamento de piso rígido devido à flexibilidade dos pavimentos. Estes exibem muito limitada resistência e rigidez à distorção, podendo no entanto a rigidez axial ser suficiente para fazer alguns edifícios moverem-se em banda nos modos de vibração de menor frequência, enquanto a configuração deformada destes modos nos restantes edifícios e na própria banda na direcção perpendicular mostra deslocamentos muito reduzidos em comparação com os deslocamentos na direcção da banda. A figura 13 mostra a configuração em planta de dois destes modos de vibração. A outra conclusão deste estudo é que a partilha das paredes meeiras faz com que os edifícios restrinjam as rotações uns dos outros, pois cada um não roda independentemente dos adjacentes.
Além do IST e do LNEC, também noutras instituições de investigação tem havido interesse no estudo dos edifícios pombalinos. Por exemplo na Universidade do Minho analisou-se com detalhe o potencial desempenho sísmico do quarteirão do Martinho da Arcada [11], em que vários edifícios já haviam sido alvo de intervenções pouco criteriosas durante o século XX, com introdução de elementos de aço e betão. O quarteirão localiza-se na esquina da rua da Prata com Praça do Comércio. Com base num modelo analítico do quarteirão com propriedades dos materiais calibradas experimentalmente, chegou-se à conclusão de que o edifício mais fraco do quarteirão resistiria a um sismo de cerca de 70% do sismo regulamentar do RSA.
Uma das poucas questões técnicas relativas aos edifícios pombalinos que tem merecido alguma atenção da opinião pública é o estado das suas fundações. Há uns anos atrás detectaram-se alguns “buracos” no subsolo da Baixa de Lisboa, presume-se que causados por alterações no escoamento das águas subterrâneas nessa zona, devido a numerosas obras subterrâneas. Também se têm observado variações significativas nos níveis freáticos, por exemplo nas caves do Museu do BCP, em que o topo de algumas estacas de madeira está visível, como se pode observar na figura 4. Como se sabe estas variações podem levar ao apodrecimento das estacas, que tem sido detectado em alguns casos.
Face à situação descrita pode concluir-se que os edifícios pombalinos não estão apoiados exclusivamente nas estacas de madeira por duas razões: 1 - se estivessem as consequências seriam mais gravosas do que observado até agora, com fendilhação generalizada em alguns edifícios ou até mesmo colapso; 2 - as estacas têm comprimentos reduzidos, da ordem dos 5m, encontrando-se o solo competente a profundidades bastante maiores em grande parte da Baixa. Pensa-se assim que o papel das estacas terá sido essencialmente o de compactar o aterro superficial em que os edifícios de facto se apoiam, feito após o sismo de 1755 em grande parte com destroços dos edifícios destruídos pelo terramoto. Assim este aterro actua como um gigantesco ensoleiramento geral, degradando as tensões e transmitindo-as aos solos subjacentes, de fraca capacidade de carga. Embora esta seja uma análise qualitativa, tentou-se substanciá-la melhor estudando a sensibilidade dos edifícios pombalinos a assentamentos de apoio, pois o apodrecimento das estacas pode não por em causa a capacidade de suporte vertical no curto prazo, mas ao deixar vazios ao nível das fundações pode causar assentamentos de apoio. Assim analisaram-se os efeitos de deslocamentos diferenciais com diferentes perfis na base do modelo do edifício analisado em [2]. Os resultados[12] indicam que seriam necessários assentamentos diferenciais da ordem de 20cm do centro para a periferia do edifício para se produzir rotura de ligações ou fendilhação significativa (eventualmente à excepção do pavimento do 1º piso, em alvenaria), ou seja, esses assentamentos têm de ter uma dimensão considerável para terem efeitos significativos na maior parte do edifício. No entanto isto não significa que o apodrecimento das estacas não tenha importância, pois os vazios assim criados, mesmo sem grandes consequências visíveis a curto prazo, podem induzir assentamentos significativos durante a ocorrência de um sismo por alteração das condições da fundação, enfraquecendo os edifícios e potenciando maiores danos.
Outra questão muito importante que afecta a resistência sísmica dos edifícios pombalinos na actualidade são as intervenções que foram sofrendo ao longo do tempo, normalmente associadas à introdução de novas funcionalidades, ampliações com introdução de mais pisos ou adaptação a novos usos. Na figura 14 [13] mostrase um caso de canalizações introduzidas provavelmente no século XX no interior de uma parede de frontal cortando as barras de madeira e enfraquecendo fortemente a resistência do frontal, em particular a cargas horizontais e outro caso em que os atravessamentos da parede se fazem na perpendicular ao plano desta com menos interferência na estrutura de madeira (que não deveria existir). A figura 15 [14] mostra uma rua da Baixa de Lisboa em que se pode ver claramente que a altura dos edifícios é bastante variável, quando os planos originais da reconstrução de Lisboa previam edifícios todos da mesma altura. As diferenças devem-se na maioria dos casos a pisos acrescentados após a construção original, o que agrava fortemente os efeitos dos sismos.
A figura 16 [14] mostra um dos muitos edifícios em que aparentemente foram cortados pilares no rés-do-chão para abrir espaço para montras amplas, mas enfraquecendo o edifício numa zona que irá ser mais solicitada durante a ocorrência de um sismo.
Normalmente estes cortes são acompanhados da introdução de uma viga de reforço que suporta o pilar cortado acima da zona removida e se apoia nos pilares adjacentes.
No entanto há casos de remoção de painéis da Gaiola sem este tipo de reforço, o que ilustra o excelente desempenho da Gaiola, que permite nos pisos superiores redistribuir as cargas verticais da zona cortada para as zonas adjacentes.
Intervenções como as expostas, que provavelmente se deram na maioria dos edifícios da Baixa, afectaram muito negativamente a sua resistência sísmica, mas como afectam pouco a resistência a cargas verticais, as consequências só se tornarão visíveis quando ocorrer novamente um sismo intenso em Lisboa.
Pode concluir-se do exposto, que apesar da construção pombalina original apresentar excelentes características de resistência sísmica, tendo em contas as limitações de materiais e conhecimento técnico da época, essas características foram sendo progressivamente adulteradas em consequência do que grande parte desses edifícios apresentam hoje uma vulnerabilidade sísmica excessiva.
4. ESTUDOS E ACÇÕES DE REFORÇO
Na referência [15] refere-se que pode não ser economicamente viável e sem adulterar excessivamente um edifício, reforçá-lo de forma a conferir-lhe níveis de segurança semelhantes aos exigidos para construção nova. Assim o objectivo do reforço pode ser melhorar o máximo possível o potencial desempenho sísmico da construção de forma a atingir padrões mínimos aceitáveis de segurança, sujeito a restrições económicas e no nível de adulteração do edifício. Neste contexto pode ser necessário ser mais selectivo e criterioso nas intervenções a efectuar, identificando os potenciais mecanismos de colapso do edifício e agindo apenas sobre os mais fracos. Esta filosofia pode ilustrar-se graficamente como na figura 17. Assemelhando a resistência sísmica do edifício a uma corrente traccionada, constata-se que a intervenção sobre o elo mais fraco até atingir o nível de resistência de outro elo e só por si suficiente para melhorar o desempenho global.
No estudo do edifício do edifício da Rua da Prata, anteriormente referido [2], apresentam-se também resultados da análise de potenciais estratégias de reforço. No pressuposto de que as ligações frontais/fachadas são fracas, este é o “elo” mais fraco da “corrente”, que leva ao colapso da fachada principal para a rua. No entanto pode não valer a pena reforçar as ligações a partir de certo nível, correspondente à rotura nos pilares da base.
A partir daí a melhoria do desempenho sísmico exigiria o reforço da resistência a ambos os mecanismos de colapso. Este estudo chama também a atenção para o facto de o reforço, por aumentar a resistência a um dado mecanismo de colapso poder reduzir a resistência a outro, pois se se alterar a rigidez de alguns elementos alteram-se as frequências, as forças de inércia e a distribuição interna de esforços na estrutura. Seria o caso se o reforço contra a queda da fachada se fizesse pela introdução de vigas periféricas ao nível dos pisos.
Outra estratégia de reforço que pode ser bastante eficiente é o reforço da rigidez dos pisos com um conjunto de cantoneiras metálicas de pequena dimensão bem ligadas ao resto estrutura, de forma a criar um efeito semelhante ao de piso rígido e transferindo parte das forças de inércia para as paredes mais rígidas, em particular as empenas. Apesar do aumento da rigidez dos pisos induzir um aumento da frequência que aumenta as forças de inércia em cerca de 17%, este efeito é largamente compensado nos elementos mais vulneráveis pela redistribuição dessas forças pelos elementos verticais. Reduzem-se assim as solicitações sobre os pilares do résdo-chão e sobre as fachadas e as suas ligações aos frontais e às empenas [16]. A figura 18 mostra a) um esquema da disposição das cantoneiras de reforço e a deformação do piso, b) a deformação do mesmo piso sem reforço em planta, e c) as deformações da fachada para fora do seu plano.
No plano das aplicações é importante referir que existe já em Portugal uma experiência razoável de reforço estrutural de edifícios antigos, que envolve diversos projectistas e empresas de construção. No sentido de lustrar essa capacidade, desenvolvida principalmente nas últimas duas décadas, apresentam-se alguns casos de aplicação e técnicas de reforço.
O primeiro exemplo refere-se à recuperação e reforço de um edifício pombalino na Rua do Comércio, executado pelas empresas Monumenta e STAP [17] e que incluiu as seguintes tarefas:
1. Recuperação dos elementos originais da estrutura de madeira existentes e substituição selectiva e pontual dos elementos que revelaram elevado estado de degradação.
2. Execução de reforços e reconstruções pontuais em paredes interiores, frontal e divisórias, preenchendo lacunas ou vãos, com recurso às técnicas originais – reconstrução em cruz de Sto. André;
3. Execução de uma solução de reforço estrutural, para melhoria do comportamento global do edifício a cargas horizontais (como a acção sísmica), que consistiu em:
- sistema de atirantamento (a 3 níveis) com ancoragens dúcteis nas fachadas exteriores e ancoragens de manga injectada na ligação às paredes de empena;
- chapas metálicas de ligação entre vigas consecutivas da estrutura de pisos de forma a garantir continuidade.
- aplicação de dispositivos de ligação parede-parede e piso-parede.
Note-se que no essencial a Gaiola Pombalina continua a fazer parte da solução estrutural e não é parte do problema, viabilizando assim intervenções menos extensivas e intrusivas do que se a Gaiola não existisse.
O segundo exemplo é a reabilitação de um edifício na Rua Nova do Carvalho, cujo projecto de estrutura realizado pelo gabinete A2P [18] incluiu o reforço da resistência sísmica. Nesta operação de reabilitação foi posssível manter generalizadamente os elementos primários do edifício, nomeadamente:
• Fundações
• Paredes resistentes de alvenaria ordinária, reforçadas com lâminas armadas
• Paredes resistentes de frontal com reparação de elementos de madeira e de enchimentos de alvenaria
• Colunas e abóbadas do rés-do-chão
• Estrutura da escada e caixa de escada
• Vigamentos de madeira dos pisos elevados
• Lajedo de pedra no átrio do rés-do-chão
• Degraus, patamares e tectos da escada
• Caixilharia exterior e interior, incluindo portadas, com substituição de aros e duplicação da caixilharia exterior
• Ferragens da caixilharia
A figura 20 ilustra o preenchimento de um frontal pombalino com alvenaria de tijolo e argamassa hidráulica de cimento. Conforme se referiu, em termos estruturais não se justifica ter com estes preenchimentos em alvenaria um cuidado semelhante ao que deve ser tido em outras partes da estrutura, pois o que é claramente mais importante para a resistência destas paredes é a estrutura da Gaiola em madeira.
Em Portugal existe também experiência considerável de reforço de outros tipos de edifícios de alvenaria, por exemplo no caso da reparação e reforço das construções danificadas pelo sismo do Faial de 1998. Diversas técnicas utilizadas nessas obras podem também ser aplicadas a elementos de edifícios pombalinos. Na figura 21 [19] apresentam-se dois exemplos, referentes a ligações de elementos de pavimentos em madeira a paredes de alvenaria e ligações entre paredes ortogonais de alvenaria.
5. VIABILIDADE ECONÓMICA DO REFORÇO
A viabilidade da conservação e reforço dos edifícios pombalinos depende duplamente da capacidade de adaptar os edifícios a novos usos ou ao mesmo uso mas com graus de exigência diferentes. Por exemplo os edifícios pombalinos eram caracterizados nos pisos superiores por divisões com dimensões muitas vezes exíguas, ou seja quartos com áreas de 5 ou 6 m2, ausência de elevadores, etc. Algumas destas características tornam os edifícios poucos apelativos para voltarem a ser de novo habitados. Se se pensar na sua utilização para escritórios esta arquitectura também não é apelativa, para além de que assim a Baixa ficaria quase vazia e sem vida durante a noite e fins-de-semana, o que não é desejável. É assim importante adaptar os edifícios a usos e exigências funcionais actuais. Além do repovoamento da Baixa esta adaptação a usos actuais permite rentabilizar os edifícios e é por isso necessária para viabilizar a contribuição do sector privado para as obras de conservação e reforço.
Assim a ampliação de espaços interiores pode apontar para soluções que impliquem remover algumas paredes interiores. Embora esta seja uma questão discutível, é opinião do autor que nesta questão não se deve ser fundamentalista mas deve-se ser extremamente criterioso. Não se deve ser fundamentalista para não inviabilizar obras sem as quais a preservação da construção pombalina pode não ser possível. Neste contexto pode ser necessário sacrificar o secundário para preservar o essencial. Como secundário, tanto do ponto de vista estrutural como do ponto de vista histórico e patrimonial, podem considerar-se as paredes divisórias em tabique. Como essencial, também de ambos os pontos de vista, podem considerar-se as paredes de frontal. Ou seja, a eventual remoção de paredes tem de ser criteriosa, sendo inaceitável “cortar a direito”. Assim a remoção de alguns tabiques, embora possa enfraquecer ligeiramente a estrutura, o que pode eventualmente ser compensado, pode permitir uma arquitectura mais adequada às exigências funcionais actuais e simultaneamente preservar o essencial [21]. No entanto esta questão merece reflexão e debate aprofundados, não apenas dos técnicos e promotores imobiliários, mas de toda a sociedade.
Outro problema grave põe-se ao nível do rés-do-chão, onde é frequente o corte de pilares para ampliação de montras ou acessos exteriores. Isto não é aceitável, dadas as potenciais consequências. Assim são os donos das lojas e estabelecimentos que têm de assumir que se querem montar ou manter um negócio na Lisboa Pombalina têm de viver com esta restrição, o que não parece ser muito difícil na maioria dos casos. Existem na Baixa alguns casos de integração dos pilares nas montras, por exemplo como suporte de prateleiras para objectos expostos, ou entre os acessos exteriores. A figura 20 mostra dois exemplos de compatibilização da arquitectura e estruturas originais com usos e funcionalidades actuais.
6. CONCLUSÕES
A Baixa Pombalina de Lisboa é um marco da História da engenharia sísmica à escala mundial, pois foi a primeira vez na História da Humanidade que técnicas de construção anti-sísmica foram aplicadas à escala de uma cidade. A Baixa constitui assim um património que é nossa obrigação preservar e transmitir em condições de segurança às gerações futuras. Também nos compete valorizar internacionalmente este património e por isso pode fazer sentido a candidatura da Baixa a Património Mundial. Uma candidatura destas tenderá naturalmente a basear-se em todas as características (urbanísticas, arquitectónicas, decorativas, estruturais, etc.) que possam valorizar os edifícios individualmente e no seu conjunto. Mas das várias características, a mais distintiva por ser única, é o facto já referido de os edifícios incorporarem uma estrutura sismo-resistente, cuja aplicação na Baixa foi a primeira na História à escala de toda uma cidade. A Baixa é assim um testemunho do engenho e da capacidade dos nossos antepassados e um elemento importante do nosso património construído, parte cada dia mais importante da nossa identidade como povo e como Nação num mundo cada vez mais interdependente. A sua valorização e preservação passa assim pela preservação da estrutura da Gaiola pombalina no maior número possível de edifícios.
Existe em Portugal, nos Laboratórios do Estado, nas universidades e nas empresas, a capacidade técnica para intervir nos edifícios pombalinos, promovendo a sua conservação e reforço estrutural, permitindo assim a transmissão às gerações futuras em condições de segurança aceitáveis deste património de inestimável valor. Assim aquilo a que muitas vezes assistimos no passado, a demolição de edifícios Pombalinos, mantendo apenas as fachadas, e a posterior construção de uma estrutura nova em betão armado no seu interior, com base apenas em motivações económicas, é um acto de vandalismo cultural inaceitável de que as autoridades responsáveis não deveriam ser cúmplices. Na reabilitação de edifícios com valor patrimonial e histórico é fundamental o engenho e a arte dos intervenientes, em particular engenheiros e arquitectos, para conciliar a melhoria da segurança, mesmo que para níveis mínimos razoáveis não tão exigentes como nas estruturas novas, com a preservação dos valores patrimoniais, o que implica intervenções o menos intrusivas possível.
7. REFERÊNCIAS
[1] Segurado, J., Trabalhos de carpintaria civil, Biblioteca de Instrução Profissional, sem data
[2] Cardoso; R., Vulnerabilidade sísmica de estruturas antigas de alvenaria – aplicação a um edifício pombalino, (Prémio MOPTC 2003) Tese de Mestrado em Engenharia de Estruturas, IST, 2002
[3] Appleton, J., Tipificação do parque construído, Cap. 9 do Livro Sismos e Edifícios, Edições Orion, 2008
[4] Lopes, M., Evaluation of the seismic performance of an old masonry building in Lisbon”, Proceedings da 11ª conferência Mundial de Engenharia Sísmica, artigo nº1484, Acapulco, México, 1996
[5] RSA, Regulamento de Segurança e Acções em estruturas de edifícios e pontes, Dec-Lei nº235-83, INCM, 1983
[6] Ramos, J.S., Análise experimental e numérica de estruturas históricas de alvenaria, dissertação de Mestrado em Engenharia Civil, Escola de Engenharia da Universidade do Minho, 2002
[7] Cruz, H., Moura, J.P., Machado, J.S., The use of FRP in the strengthening of timber reinforced masonry load-bearing walls, Proceedings of Historical Constructions, possibilities of Experimental and Numerical Techniques, Guimarães, 2001
[8] Meireles H, Bento R, , Cyclic behaviour of Pombalino "frontal" walls, 14th European Conference of Earthquake Engineering, paper 325, Ohrid , Macedonia, 2010.
[9] Teixeira, M., J., Reabilitação de edifícios pombalinos. Análise experimental de paredes de frontal. Dissertação de Mestrado, IST, 2010
[10] Mafalda; M., Lopes, M. e Bento, R., Dynamic behaviour of a pombalino quarter, Conferência dos 250 anos do Sismo de 1755, Lisboa, 2005
[11] Ramos, L.F. e Lourenço, P.B., Moddeling and vulnerability of historical city centers in seismic areas: a case study in Lisbon, Engineering Structures, vol 24, 2004, pp 1295-1310
[12] Cardoso, R., Bento, R. e Lopes,M., Foundation differential settlement effects on the seismic resistance of pombalino buildings, Conferência dos 250 anos do Sismo de 1755, Lisboa, 2005
[13] Lopes, M., Bento, R. e Cardoso, R., Segurança Estrutural da Baixa Pombalina, Revista Monumentos, nº21, DGEMN, Setembro 2004, pp176-181
[14] Monteiro, M. e Lopes, M., Intervenções negativas e erros de execução, Cap. 10 do Livro Sismos e Edifícios, Edições Orion, 2008
[15] Costa, C., Reparação e reforço das construções, Cap. 11 do Livro Sismos e Edifícios, Edições Orion, 2008
[16] Neves, S., Análise sísmica de um edifício da Baixa pombalina, Dissertação de Mestrado em Engenharia Civil, IST, 2008
[17] Cóias e Silva, V., A reabilitação do edificado de Lisboa e o risco sísmico, Conferência Reabilitar 2010, Lisboa
[18] Appleton, J., Reabilitação de edifícios antigos: uma escolha sustentável, II Jornadas Quercus - Arquitectura Sustentável, 2010
[19] Carvalho, E., C., Oliveira; C., S., Fragoso, M. e Miranda, V., Regras gerais de reabilitação e reconstrução de edifícios correntes afectados pela crise sísmica do Faial, Pico e S. Jorge iniciada pelo sismo de 9 de Julho de 1998, Governo Regional dos Açores, 1998
[20] Guedes; J., Costa;A., Estabilização da fachada da Igreja matriz de Ponte da Barca, Seminário A Intervenção no Património. Práticas de Conservação e Reabilitação, Porto, 2002
[21] Mira, D., Análise do sistema construtivo pombalino e recuperação de um edifício, Dissertação de Mestrado em Arquitectura, IST, 2006